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Abstract

We propose a new approach for developing continuum models for the mechanical behavior of woven fabrics in pla-
nar deformation. We generate a physically motivated continuum model that can both simulate existing fabrics and pre-
dict the behavior of novel fabrics based on the properties of the yarns and the weave. The approach relies on the
selection of a geometric model for the fabric weave, coupled with constitutive models for the yarn behaviors. The fabric
structural configuration is related to the macroscopic deformation through an energy minimization method, and is used
to calculate the internal forces carried by the yarn families. The macroscopic stresses are determined from the internal
forces using equilibrium arguments. Using this approach, we develop a model for plain weave ballistic fabrics, such as
Kevlar�, based on a pin-joined beam geometry. We implement this model into the finite element code ABAQUS and
simulate fabrics under different modes of deformation. We present comparisons between model predictions and exper-
imental findings for quasi-static modes of in-plane loading.
� 2004 Elsevier Ltd. All rights reserved.
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1. Background

The mechanical behavior of woven fabrics is of interest in numerous applications, including apparel, fab-
ric reinforced composites, and body armor for ballistic protection. A number of current research efforts are
focused on the integration of woven fabrics with other technologies such as flexible electronics, microflui-
dics, or ‘‘actuated’’ materials (such as synthetic muscle fibers) to obtain hybrid woven systems with ad-
vanced capabilities. Examples include body armor with embedded medical sensors or communications
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equipment, apparel with microfluidic cooling or heating capabilities, or clothing that augments the physical
capabilities of the wearer. Development of these technologies requires a thorough understanding of the
mechanical behavior of woven fabrics.

The mechanical behavior of even relatively simple plain-weave fabrics is complex due to the intricate
interactions of the yarns that constitute the fabric ‘‘mesostructure’’. Despite many attempts to develop
effective models for fabric behavior, there is currently no widely accepted modeling approach that can accu-
rately capture all of the important aspects of fabric deformation and effectively predict both the macro-
scopic mechanical response of the fabric as well as the response of the component yarns at the
mesostructural level. This is due in part to the variability of requirements for fabric models in different
applications. Specialized fabric models employing various approaches have been proposed by researchers
from several industries. A number of these models are summarized below.

One of the simplest approaches used to model fabrics is to homogenize the behavior of the underlying
mesostructure and approximate the fabric as an anisotropic continuum. In the framework of a continuum
formulation, a woven fabric can be treated as an anisotropic planar continuum with two preferred material
directions. Homogenized formulations for fabrics or fabric composite structures have been proposed by a
number of different researchers. These include Steigmann (1992) and Baseau (2003), who have developed
continuum formulations for ‘‘filamentary networks’’ appropriate for non-reinforced fabrics, Reese
(2003), who considers an elastoplastic anisotropic continuum formulation, Xue et al. (2003) and Shockey
et al. (1999a,b, 2001, 2002a,b), who describe continuum models for woven composites, and Raun and Chou
(1995) and Gommers et al. (1996) who use continuum models for knitted composites.

Continuum models typically allow greater computational efficiency and are easily integrated into multi-
component system models. However, the identification of appropriate homogenized material parameters
can be a formidable challenge. Different researchers have approached this challenge in different manners.
For example, Xue et al. determine material properties through empirical testing, while Shockey et al. rely
both on empirical testing and on detailed finite element modeling. Reese employs mixed element modeling
of the fabric mesostructure to determine the constitutive properties for a continuum model.

Unfortunately, most traditional continuum models proposed in the literature do not account for the
effect of interactions between the yarn families. These interactions include:

• crimp interchange, a mechanism by which the fabric elongates along the direction of one yarn family with
negligible yarn stretching, as the yarns of that family become less crimped (i.e. the yarn waves decrease in
amplitude and increase in wavelength), while the fabric contracts along the direction of the other yarn
family, as the yarns of that family become more crimped;

• locking, a mechanism by which the fabric resists deformations as the interwoven yarns jam against each
other;

• resistance to relative yarn rotation, which is the dominant mechanism for the response of fabric to in-
plane shear. These are important behaviors in many fabric applications. The omission of potentially
important behaviors makes traditional continuum models unsuitable for the general analysis of novel
fabric systems where both the macroscopic behavior at the continuum level and the yarn interactions
at the mesostructural level may be important.

A large number of mesostructurally based analytical models have been developed for the study of these
behaviors. Mesostructurally based analytical models use mathematical relations to predict the mechanical
response of the fabric and its component yarns in specific modes of deformation. For example, a model
could be formulated to predict the load–extension behavior of a fabric under uniaxial or biaxial tension
along the warp or weft yarn family directions. Mesostructural models can be used to quantify homogenized
material properties for use in continuum models. Hearle et al. (1969) describe a number of classical analyt-
ical fabric models. One of the most widely adopted of these, a model proposed by Peirce (1937), shown in



Fig. 1. Geometry proposed by Peirce (1937).
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Fig. 1, provides a mathematical framework for relating the parameters that describe the geometrical con-
figuration of a plain weave fabric with circular yarns.

A number of researchers have employed modified forms of Peirce�s geometry to account for yarns with
non-circular deformable cross sections. Warren (1992) uses such a modified geometry to predict the low-
load response to uniaxial and biaxial tension along the yarn families of a plain woven fabric based on elastic
beam theory with coupled yarn extension and bending effects. Sagar et al. (2003) also employ a modified
form of this geometry and use the principle of stationary potential energy to determine the fabric config-
uration and deformation in response to an applied load. However, all such analytical models are only valid
in the specific loading modes for which they have been developed; for example, both Warren�s and Sagar�s
models assume that the yarn families remain orthogonal and hence neither of these models allows shear
deformation. Extension of these models to more general load cases is challenging due to the complexity
of their geometry.

Because Peirce�s geometry is fairly detailed, other researchers have proposed simpler models in order to
achieve greater mathematical simplicity or computational efficiency. In a series of classical articles, Kawa-
bata et al. (1973a,b,c) propose analytical models for the biaxial, uniaxial, and shear deformation behaviors
of fabrics based on the much simpler pin-joined truss geometry shown in Fig. 2. Other researchers have
subsequently employed this geometry to develop improved analytical models, including Realff et al.
(1997) who modify Kawabata�s uniaxial model to include more complex behaviors such as yarn flattening
and consolidation. Kato et al. (1999) propose an analytical model for predicting the constitutive behavior
of a coated fabric composite that is based on the pin-joined lattice-type geometry shown in Fig. 3. This
geometry is similar to that proposed by Kawabata but with additional spars to capture the effect of the
Fig. 2. Geometry proposed by Kawabata et al. (1973a).



Fig. 3. Fabric lattice geometry used by Kato et al. (1999).
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coatings and create a unit cell capable of resisting shear deformation. A detailed summary of several other
analytical fabric models is given by Realff (1992).

Analytical models of the fabric mesostructure can be incorporated into anisotropic continuum formula-
tions to yield models that track the fabric mesostructure as the continuum deforms, thereby combining the
benefits of continuum modeling with the capability of following the evolution of the fabric mesostructure in
a single modeling step. Boisse and his colleagues (1997, 2001) have developed a four-node finite element for
simulating the response of plain weave fabric composites during forming processes. The yarn directions
evolve as the elements deform and the yarn-direction behaviors are based on Kawabata�s analytical model,
thereby allowing accurate prediction of biaxial fabric behavior with evolving material directions. Ratten-
sperger et al. (2003) take a similar approach for modeling fabric-reinforced hydraulic hoses, with fabric lat-
tice geometry similar to that used by Kato, and use a conventional finite element formulation with rebar
reinforcements. However, neither Boisse�s nor Rattensperger�s models include yarn bending effects, locking,
or resistance of the fabric to shear. On the other hand, Tanov and Brueggert (2003) present a mesostruc-
turally based continuum model that includes shear and locking resistance through diagonal spar elements
within the assumed unit cell network, but Tanov�s model does not include crimp interchange. No suffi-
ciently general mesostructurally based continuum model has yet been proposed.

An alternate approach to capture the mechanical response of woven fabrics is to abandon continuum
modeling and use numerical modeling to directly capture the fabric mesostructure. One approach is to
directly model every yarn in the fabric as shown in Fig. 4. This method, used by Ng et al. (1998), Boisse
et al. (2001), and Shockey et al. (1999a,b, 2001, 2002a,b) among others, has the advantage of capturing
all yarn interactions and providing a detailed description of all mechanisms of fabric deformation.
Fig. 4. Shockey�s detailed FE model of a plain weave reinforcing fabric (Shockey et al., 1999a).
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However, its very large computational requirements limit it to relatively small systems. This approach is not
suitable to the analysis of large or multicomponent systems, and is generally used only to gain insight into
the mechanics of fabric deformation at the mesostructural level, to estimate homogenized properties for
simpler continuum models, or to characterize the interactions of the yarns. Furthermore, the constitutive
behavior of the individual yarns can be a source of model uncertainty, as the yarns themselves are generally
not homogeneous but rather are composed of individual fibers; describing this complex morphology may
require even more detailed sub-modeling. In order to achieve greater computational efficiency, a mix of sim-
pler, more efficient finite elements (such as beams or spars) can be used to directly model the entire fabric
mesostructure. A wide variety of models have employed this mixed element approach, including the model
proposed by Reese (2003), the model proposed by MacGlockton et al. (2003), which uses a mixture of truss
and solid elements to model 3D textile composites, and the model proposed by Cherouat and Billouet
(2001) for pre-impregnated woven composites, which uses truss elements and membrane elements.

Other researchers have used alternative techniques that do not rely on a finite element discretization,
especially for ballistic analyses. The most widely used model for predicting the ballistic response of fabrics
was proposed by Roylance et al. (1995) and consists of a planar rectangular array of point masses to cap-
ture the inertia of the fabric, connected by trusses to capture the yarn compliances. Extensions and
improvements to this model have been proposed by a number of researchers, including Shim et al.
(1995), and have been shown to be effective in specialized cases at predicting the ballistic performance of
certain classes of woven fabrics. However, models of this type capture only selected aspects of the behavior
of the fabric mesostructure and therefore are not suitable for more general analyses. A completely different
approach has been proposed by Breen et al. (1994), who use a model composed of interacting particles to
predict the low stress behavior, especially draping, of woven fabrics.

These existing approaches to fabric modeling tend to be specialized. A more universal modeling ap-
proach that can be tailored to a wide variety of different applications is required for the development of
advanced fabric systems. Such an approach would also be useful in the analysis of existing fabric applica-
tions. In this paper, we propose a general approach for the systematic development of a mesostructurally-
based continuum model for the mechanical behavior of woven fabrics. This approach has the following
properties:

• It relates the behavior of the fabric on the macroscopic scale, as characterized by the macroscopic defor-
mation gradient, loads, and stresses, to the response of the fabric�s mesostructure, as characterized by the
geometrical configuration of the weave and the loads acting on the yarns. However, unlike many estab-
lished mixed-mode or homogenization approaches (which generally require multiple modeling steps at
different length scales), this approach integrates the two relevant length scales into a single model.

• It is sufficiently general to simulate the known responses of a fabric as well as to predict the behavior of a
novel fabric based on the measured properties of the component yarns and yarn interactions.

• It can be tailored to a variety of different applications by selecting appropriate geometrical and consti-
tutive assumptions. While the resulting model will, of course, be specialized to the specific application,
the same modeling method can be used to develop models for a wide variety of purposes.
2. Model development

2.1. Mechanics of an anisotropic planar continuum

In a continuum description, yarns are not modeled explicitly; rather, the woven fabric is treated as a
homogenized anisotropic material, as shown in Fig. 5. The characteristic length scale for the boundary



Fig. 5. Approximating a fabric as an anisotropic continuum.
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value problem to be treated with this approach must be sufficiently large compared to the length scale of the
fabric mesostructure. Two families of vectors can be used to describe the orientation and deformation of
the yarn families at each continuum material point. The deformed configuration of the individual yarns
must be related to the macroscopic state of deformation and the loads carried by individual yarns must
be related to the macroscopic state of stress.

The macroscopic state of deformation is typically described using the deformation gradient, designated
by F, where components in a Cartesian coordinate systems are obtained as:
F jkðtÞ ¼
dxjðtÞ
dX k

: ð1Þ
Here xj(t) is the i-coordinate of a material point at time t, and Xk is the i-coordinate of that point in the
undeformed configuration. The deformation gradient F describes the transformation of material lines with
deformation: a vector 0a that describes a material line in the undeformed configuration is transformed by
deformation into a vector a according to:
a ¼ F0a: ð2Þ

The deformed length a of this vector is given by:
a ¼
ffiffiffiffiffiffiffiffiffi
a � a

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF0aÞ � ðF0aÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0a � ðFTFÞ0a

q
: ð3Þ
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The angle h between two material lines a and b can be determined from the dot product of the two:
a � b ¼ ðF0aÞ � ðF0bÞ ¼ ab cos h: ð4Þ

These relations imply that if the deformation gradient at a point is known, the deformed length, orienta-
tion, and angles between material lines at that point can be calculated.

The ‘‘true’’ stress measure in the loaded (deformed) configuration is the Cauchy stress, r. If a small sur-
face with area dS within the deformed body is defined by a vector ndS, where n is the unit normal to the
surface, and the Cauchy stress in the body at that point is r, the traction force vector t that results from r

acting on dS is given by:
t ¼ rndS: ð5Þ

This is the macroscopic stress measure that must be determined from the applied deformation history in
order to define a continuum constitutive model.

Many of the challenging aspects of modeling fabric behavior, such as capturing crimp interchange and
locking, relate to the in-plane response of the fabric. Furthermore, with the exception of three-dimensional
weaves, the out-of-plane behavior of a fabric is typically only weakly coupled to the in-plane behavior in
the absence of out-of-plane loads. (Large out-of-plane loads, such as transverse shear stresses or through-
thickness compression, will obviously have a significant effect on the in-plane response of the fabric). In
this paper, we introduce a two-dimensional planar model that captures only the in-plane response of the
fabric. This model cannot be used to predict out-of-plane displacements or bending, transverse shear re-
sponses, or changes to the fabric thickness. We are currently working to extend the model to a three
dimensional implementation using a shell formulation, where the membrane fabric behavior will be cap-
tured using the approach developed here for the planar behavior. For the current planar model, the rel-
evant stresses and strains are the in-plane normal components {r11,r22} and {e11, e22} and the in-plane
shear components r12 and e12. The out-of-plane response is considered decoupled from the in-plane
response and the through-thickness strain resulting from in-plane extension and contraction is neglected.
No external out-of-plane loadings are considered. Under these conditions, plane stress and plane strain
conditions are equivalent, as r33 and e33 are both identically zero. The choice of the out-of-plane model
dimension is arbitrary and so, for simplicity, a constant unit thickness is assumed for the fabric
continuum.

2.2. General approach and limiting assumptions

We adopt a number of limiting assumptions to simplify our model. The current model is intended for
quasi-static analysis of fabrics subjected only to in-plane loads. It does not include failure mechanisms such
as yarn breakage, unraveling of the weave, and yarn pullout. For deformation histories where these failure
modes are not present, yarn slip at the crossover points will be negligible. We rely on the assumption that
no yarn slip occurs (i.e., the yarns act as if they were pinned together where they cross). This assumption
implies that the crossover points deform in an affine manner with the fabric continuum and the vectors
describing the yarn family orientations and wavelengths are material lines. Such a ‘‘slip-free’’ model is accu-
rate until the onset of failure, when yarn slip begins to dominate the response of the fabric. We are currently
developing more advanced continuum fabric models that include the effects of yarn slip.

The fabric configuration, yarn loads, and macroscopic stresses can be determined from the state of
macroscopic deformation through the following five steps:

1. Select a geometry that represents the fabric and define a unit cell (Section 2.3).
2. Associate constitutive relations with the interactions and deformations of the yarns within the unit cell

(Section 2.4).
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3. Establish a method for determining the geometric configuration of the fabric mesostructure from the
macroscopic deformation gradient (Section 2.5).

4. Calculate loads carried by the yarns in the deformed fabric configuration (Section 2.6).
5. Transform these mesostructural loads into continuum stresses at the macroscopic scale (Section 2.6).

This approach is sufficiently general to permit the development of models appropriate for a wide variety
of applications. The geometry and constitutive relations chosen in the first two steps control which behav-
iors a model can capture and determine its computational efficiency and accuracy; hence these choices can
be used to tailor the model to a specific application.

In order to demonstrate the application of this approach, we have used it to develop a model for the in-
plane, quasi-static behavior of a ballistic fabric, Kevlar� S706, manufactured by DuPont. Kevlar� S706 is
a plain weave fabric composed of multifiber untwisted yarns. While our current model is concerned only
with capturing the in-plane, quasi-static behavior of this fabric, we plan to expand it to a three-dimensional,
dynamic implementation suitable for simulating ballistic impacts. Consequently, we include all in-plane
behaviors that affect the fabric�s ballistic response. During a ballistic impact the material at the point of
impact is displaced out of the plane of the fabric and the resulting elongation of the fabric around the im-
pact zone causes strains and stresses to develop along the impacted yarns. These strains and stresses prop-
agate along yarns away from the impact zone more quickly than the out-of-plane displacement wave. The
strains increase until yarns fail as the projectile penetrates the fabric. Yarns not directly impacted are
affected because they are interwoven with yarns that are affected. For a detailed description of the
phenomena that occur during ballistic impact, see Cunniff (1992).

Due to the large velocities involved in the process and the fact that the fabric�s in-plane stiffness is much
larger than its bending stiffness, out-of-plane inertial effects and in-plane stiffness effects dominate the fabric
ballistic response. In-plane shear is important as it affects the inward flow of material, although shear angles
typically remain small-to-moderate (<30�) before failure occurs. Locking may be important as it can arrest
the inward flow of material, and crimp interchange is important since it directly affects the in-plane stiffness
and the propagation of the strain wave fronts. Resistance to yarn bending has only a small effect on the
response of the fabric due to the extremely small bending stiffness of the yarns; however, these effects
stabilize the low-stress fabric response. All these aspects of the in-plane fabric behavior (locking, shear
deformation, crimp interchange, yarn bending) have been included in the current implementation of the
quasi-static planar model.

2.3. Geometry

We have adopted a geometry similar to that proposed by Kawabata (1973), as shown in Fig. 6. The
yarns are represented as a network of trusses connected by pin-joints at their crossover points. These trusses
do not lie in the plane of the fabric but are interwoven to capture crimp interchange. They have axial com-
pliance to allow for yarn stretch but are infinitely stiff in bending. The effects of yarn bending are modeled
as being concentrated at the crossover points, where bending is resisted by rotational ‘‘bending springs’’.
Interactions between yarns at the crossover points are captured by ‘‘crossover springs’’ connecting the
pin joints. The crossover springs have two modes of deformation. They are capable of extending and con-
tracting to simulate the effects of cross-sectional deformation, allowing the yarns to change their crimp
amplitude while remaining in contact. The spring elements also offer elastic and dissipative resistance to
relative in-plane rotation of the yarn families—the mechanisms for in-plane fabric shear. Similar truss net-
works have been used by a number of different authors, such as Ben Boubaker et al. (2002), to represent
fabric weave geometries.

This geometric representation is somewhat simplistic. Its chief limitation is that it models the yarns as
straight with sharp corners at the crossover points, whereas the yarns actually wrap around the crossing



Fig. 6. Kevlar� fabric model geometry.

M.J. King et al. / International Journal of Solids and Structures 42 (2005) 3867–3896 3875
yarns with a smooth radius of curvature. This geometry consequently permits configurations that are
incompatible because of interpenetrations between the yarns, and cannot capture complex behaviors that
are controlled by yarn wrapping. However, the effects of wrapping become significant only in very tight
weaves with solid yarns, or at very high shear angles. For the specific Kevlar� fabrics and load cases con-
sidered in this work, where the yarns are composed of multiple fibers and the shear angles are typically
small-to-moderate, wrapping effects are not expected to impact the fabric response significantly. The pro-
posed geometric description therefore is adequate for capturing the relevant behaviors and is more compu-
tationally efficient than more sophisticated geometric descriptions. This modeling approach can be
extended to other applications by selecting more suitable geometric descriptions capable of capturing
behaviors relevant to those applications.

Kevlar� fabrics exhibit locking behavior, where yarns of one family jam against yarns of the other fam-
ily either due to large shear deformations (‘‘shear locking’’) or to crimp interchange (‘‘cross locking’’), as
shown in Fig. 7. During locking, the yarn cross-sections deform as the yarns are compressed against one
another. The model geometry does not track changes in the size or shape of the yarn cross sections; how-
ever, locking effects can be accounted for by introducing truss elements that remain normal to the yarns, as
shown in Fig. 8. These locking trusses simulate contact forces between the yarns and resist further defor-
mations when locking conditions are met.

The configuration of the unit cell geometry is described by the parameters shown in Figs. 6 and 8:

• the quarter-wavelengths pi,
• the half yarn lengths between crossover points (yarn length per quarter-wavelength, hereafter referred to

simply as ‘‘yarn lengths’’) Li,
• the crimp angles bi,
• the crimp amplitudes Ai,
• the locking truss lengths di,
• the inclination ai of the locking trusses to the fabric plane, and
• the in-plane included angle between the yarn families h.



Fig. 7. Cross locking (from crimp interchange) and shear locking (from shear deformation) in a plain weave.

Fig. 8. Locking trusses normal to the yarns.
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We have adopted the convention that the subscript ‘‘i ’’ designates the yarn family—1 for the warp yarns
and 2 for the weft yarns. Several of these parameters are related through geometric constraints, so that of
the thirteen parameters listed, only five are independent. For example, in the selected geometry, amplitude
and crimp angle can be related to wavelength and yarn length through the following expressions:
Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
i � p2i

q
; ð6Þ

cos bi ¼
pi
Li
: ð7Þ



M.J. King et al. / International Journal of Solids and Structures 42 (2005) 3867–3896 3877
Only the two wavelengths, the two yarn lengths, and the angle of relative yarn rotation are required to com-
pletely describe the geometrical configuration of the unit cell.

2.4. Component constitutive relations

Constitutive relations provide a means of calculating the forces carried by the components of the unit
cell and the energy stored (or dissipated) when the fabric is deformed into a certain configuration. A con-
stitutive relation is required for every mode of energy storage or dissipation in the model: eight are neces-
sary for the planar Kevlar� fabric model proposed here. Four describe the response to extension and the
bending of the two yarn families. One describes the response to interference between the warp and weft
yarns at the crossover points and one describes the response to interference that occurs during locking.
The seventh and the eighth relations describe the elastic and the dissipative responses as the yarns rotate
relative to each other at the crossover points to accommodate in-plane shear.

Once fully extended, Kevlar� yarns generally exhibit linear elastic behavior. Therefore, the model uses
linear elastic relations to describe yarn extension from an initial length 0Li to a deformed length Li:
T i ¼ kiðLi � 0LiÞ; ð8Þ

where Ti is the tensile force in the yarns of the ith family and ki is the stiffness of the yarn segments in the
unit cell (which may differ between the two yarn families). Some sources (Shim et al., 1995; Shim et al.,
2001) suggest that Kevlar� may display rate dependent behavior at large strain rates (>100s�1). While
not considered in the present implementation, rate dependence of yarn extension could be readily included
in the model. Our current model is for quasi-static analysis, where Kevlar� is effectively rate-insensitive.

Within the high-stress deformation regime, the energy associated with yarn bending is small compared to
that associated with yarn extension. However, under certain boundary conditions (where the fabric is free
to deform along one yarn family), bending resistance is the dominant resistance to deformation (other than
inertia) before the onset of locking or the point where the loaded yarns straighten. Therefore, yarn bending
resistance must be included in order to guarantee a non-zero stiffness at low strains for all admissible sets of
boundary conditions. For the selected geometry, bending is modeled as concentrated at the pin joints cor-
responding to the crossover points. Bending resistance is imparted through rotational springs at these
points and is assumed to be linear elastic, with the bending moment Mbi exerted on the yarns at the cross-
over points proportional to the change in the crimp angle bi:
Mbi ¼ kbiðbi � 0biÞ: ð9Þ

If necessary, the ‘‘initial’’ crimp angle 0bi can be adjusted to account for different amounts of permanent set
in the yarns.

Relations describing interactions between yarns at the crossover points are generally difficult both to
measure and to model at the macroscopic level, since they involve interactions between yarn fibers at a very
small scale. In general, the magnitude of the deformations of the yarn cross-sections is a non-linear function
of the force between yarns and possibly other parameters, such as the relative diameters and angles of the
crossing yarns or the tensions carried by the yarns. The proposed model adopts a significant simplification:
the effects of cross sectional deformations at the crossover points are captured by a non-linear ‘‘interference
spring’’. This spring simulates soft contact conditions, with negligible stiffness in tension and an initially
compliant compressive response that becomes increasingly stiff as the interference increases. An exponential
relation with two material parameters KI and a has been chosen to capture this behavior:
F I ¼ KIðeaI � 1Þ: ð10Þ

Here I is the interference between the cross-sections of the crossing yarns and is defined as the sum of the
initial crimp amplitudes (one half of the fabric thickness) minus the sum of the current crimp amplitudes.
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This interference relation is fairly simplistic. A number of researchers, such as Chen et al. (2001) and
Realff (1992, 1997), have shown that yarn interactions at the crossover points are more accurately described
by far more complex relations. They have proposed models to capture these interactions that include addi-
tional dependencies such as yarn tension or represent the interactions through distributed pressures rather
than point loads. More sophisticated relations would allow more accurate predictions of the fabric thick-
ness and of the fabric response to transverse pressure loads. However, the effects of these more sophisti-
cated relations on the in-plane response of the fabric to in-plane loads are expected to be small. Since
the current model is intended only for planar analysis, Eq. (10) is used in the interest of computational
efficiency.

When the fabric locks, the yarns jam against each other and their cross sections are forced deform in
order to avoid interference. During locking, the ovalized yarns in Kevlar� S706 typically deform along
their longer cross-sectional axis (parallel to the fabric plane), as opposed to the shorter axis (through the
fabric thickness), which is aligned parallel to the interference spring. Consequently, the locking response
will be more compliant than the response of the crossover-point interference spring. A power law relation
is used to describe the compressive force FL that develops in the locking trusses when their length has been
shortened by an amount IL:
F L ¼
0 IL 6 0

KdðILÞc 0 < IL

�
; ð11Þ
with IL = d0 � d, where d is the length of the locking truss and d0, the length of the truss when locking
would first start to occur, depends on the geometry of the yarns and weave. The locking trusses have no
stiffness in tension. The coefficient Kd and the exponent c are two material parameters that, together with
the parameters describing the initial geometry, determine the locking behavior. More sophisticated models
for yarn interactions during locking can be implemented should this relation prove unable to faithfully cap-
ture the fabric response.

In-plane shear is accommodated by relative rotation of the yarn families at the crossover points, known
as ‘‘trellising’’. A large number of works concerning the experimentally measured shear response of woven
materials appear in the literature: for example, the works of Mohammed et al. (2000) and Peng et al. (2004).
Fabrics typically can exhibit three regimes of shear behavior, shown schematically in Fig. 9.

A very stiff elastic response is followed by a compliant response where yarns begin to rotate, resisted pri-
marily by friction. For many fabrics, the initial elastic portion of the response is negligible. As rotation an-
gles become larger, stiffening due to locking or wrapping effects is evident. Finally, the fabric locks and
Fig. 9. Typical fabric behavior in shear.



Fig. 10. Weave schematic (top view) showing decomposition of the relative yarn rotation angle.
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stresses become very large, and more complex mechanisms of deformation (such as unraveling or wrin-
kling) occur. Stiffening and locking are captured through the locking trusses. The portion of the shear re-
sponse that does not originate from locking can be additively decomposed into an elastic portion that
results from ‘‘s-shaped’’ bending between the crossover points and a dissipative portion that results from
rotation of the yarns at the crossover points, as shown in Fig. 10.

Very little purely elastic shear occurs prior to the onset of dissipative rotation, and experiments indicate
that the shear response over this small elastic region is approximately linear:
M ¼ Ksce: ð12Þ

The elastic stiffness Ks is large enough so that dissipative rotation initiates at very small shear angles (on the
order of 10�2 rad). A rate-dependent power law is used to represent the dissipative component of the yarn
rotation, with _c0 giving the reference dissipative rotation rate at a reference moment M0, and an exponent b
capturing the rate sensitivity of the dissipative shear behavior:
_cf ¼ _c0
M
M0

� �b

: ð13Þ
The parameters in this expression may exhibit dependencies on the fabric state (e.g., frictional resistance to
rotation may be greater when the contact forces between yarns are higher). In the current model implemen-
tation, these parameters are considered as constant material properties.

2.5. Determining the fabric configuration

The geometric and constitutive relations characterize the behavior of the fabric mesostructure, but in a
continuum model the mesostructural behavior must be related to the behavior of the macroscopic contin-
uum. A means of determining the fabric mesostructural configuration from the macroscopic deformation
gradient is required. For the selected geometry, five independent parameters are required to characterize the
fabric configuration at a given location. A convenient set consists of the quarter wavelengths pi, the yarn
lengths Li, and the angle between yarn families h. More complicated geometries, especially those used to
represent different weave patterns (e.g. twill or satin weaves) would require more independent parameters.

At the continuum level, the yarn families can be described by vectors aligned with the yarns, with mag-
nitudes equal to the quarter wavelengths. Under the assumption that no slippage occurs at the crossover
points, the crossover points deform in an affine manner with the continuum and hence these vectors are
material lines. The quarter wavelengths and the angle between the yarn families can be determined directly
from the deformation gradient using Eqs. (3) and (4).
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The deformation gradient does not directly determine the other independent parameters required to
characterize the fabric configuration. With only the wavelengths pi and yarn angle h fixed, an infinite num-
ber of configurations are possible with varying yarn lengths Li of the two families, controlling the balance
between the energy stored in yarn extension and yarn bending in each of the two families and the energy
stored in the interference spring at the crossover points. Each configuration corresponds to a particular le-
vel of elastic energy stored within the unit cell. Energy based arguments can therefore be used to determine
the preferred fabric configuration.

At a given instant of time, when the macroscopic state of deformation and the instantaneous amount of
dissipative deformation are known, the fabric will assume the configuration with the smallest stored elastic
energy. In the current model, with only two free parameters, the energy at a specific time can be visualized
as a conditional function of the two yarn lengths, as shown in Fig. 11.

This ‘‘conditional energy function’’ will depend on the deformation gradient and the value of any state
variables in the model (i.e., for the current model the dissipative shear rotation angle cf). The values of the
free parameters L1 and L2 can be found by minimizing the conditional energy function with respect to these
parameters while holding constant state variables and geometrical parameters determined by the deforma-
tion gradient. In most cases, numerical techniques are necessary to minimize the conditional energy func-
tion, as a closed form for the state of minimum energy does not exist.

More complicated representative geometries (e.g. geometries used to represent other weave patterns,
such as twill and satin weaves) will have a larger number of free parameters. The conditional energy func-
tions associated with some geometries may not even have a single global minimum. Multiple minima would
correspond to multiple stable states that the fabric structure could assume at a given state of macroscopic
deformation. In these cases, the choice of an appropriate numeric minimization scheme is critical, because
the efficiency of the minimization scheme depends on the number of free parameters, and also because some
schemes converge to the local minimum nearest to the initial guess, while others converge to the global min-
imum. At this time we have not considered in detail any geometry other than the one shown in Fig. 6, which
always has a single global minimum.

2.6. Determining the internal forces and macroscopic stresses

Once the fabric configuration is determined, the internal forces acting on the fabric mesostructural com-
ponents, including yarn tensions, yarn bending moments, moments between yarns, and contact forces, can
be calculated from the component constitutive relations. These internal forces must be transformed into
equivalent macroscopic continuum stresses.

For simple hyperelastic fabric models where the fabric configuration can be calculated exactly, the mac-
roscopic state of stress can be calculated by differentiating the complete strain energy function (as opposed
Fig. 11. Conditional energy as a function of L1 and L2 at a given deformation gradient.
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to the conditional energy function used to determine the fabric configuration) with respect to a tensor
describing the deformation. Unfortunately, this approach is not applicable for cases where the strain energy
function cannot be expressed in closed form. This is the case for the proposed model because the fabric
configuration must be determined numerically. Therefore, the stress must be related to the internal forces
using equilibrium arguments. Applying the Cauchy stress to the faces of the deformed unit cell, using
Eq. (5), must result in traction forces on each face that balance the internal forces acting on that face.
Such a stress tensor can be derived by the following procedure:

1. Determine all load-bearing mesostructural members that are ‘‘cut’’ by the boundaries of the unit cell.
2. Determine the forces that these mesostructural members exert on the unit cell faces.
3. Find the components of these forces that lie in the plane of the fabric. (The out-of-plane components

should cancel).
4. Resolve the in-plane forces along vectors parallel to the yarn directions, designated by unit vectors gi.
5. Divide the resolved forces by the appropriate projected areas to obtain stresses. Express the results in

tensorial form in terms of the yarn direction vectors gi.
6. Check to ensure that the resulting stress tensor is symmetric.

The stress tensor for the Kevlar� fabric model has contributions from yarn tensions Ti, yarn bending
moments Mbi, the locking forces FLi, and the moment between the yarn families M:
r ¼ 1
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T 1 cos b1 �

Mb1 sinb1

L1
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The stress expression does not contain the forces in the crossover spring, since this spring does not intersect
the unit cell faces. In addition to the force parameters, the stress expression also contains geometrical
parameters that describe the current configuration of the unit cell.
3. Numerical implementation of the model

The Kevlar� fabric model has been implemented into ABAQUS/Standard, an implicit finite element
code, through a user-defined material subroutine. The current implementation of the model is limited to
in-plane, quasi-static analyses only. Issues related to the numerical implementation of the model are briefly
discussed in this section.
3.1. Minimization

The minimization of the conditional energy function that relates the deformation gradient to the fabric
mesostructural configuration must be performed numerically. Various numerical minimization schemes
have been investigated, including simulated annealing, the multidimensional Newton�s method, and the
downhill simplex method. For a detailed description of these techniques, refer to the work of Press et al.
(1992). Of these techniques, the downhill simplex technique was found to be the most effective for the
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current model, partly because it does not require derivatives of the conditional energy function. For differ-
ent model geometries, other numerical minimization techniques may prove more effective.

3.2. Stability and buckling

Steigmann (1992) and Baseau (2003), and others have shown that an un-reinforced elastic network, like
the Kevlar� fabric model, is mathematically guaranteed to be stable only as long as the network is in ten-
sion. Even when the fabric continuum is constrained to remain planar, the fabric geometry chosen for the
current model is unstable and capable of buckling when placed in compression. For the unit cell geometry
considered in the proposed model, two modes of buckling are possible: yarns can bend at the crossover
points and rotate out of the fabric plane, increasing their crimp (subsequently referred to as ‘‘yarn buck-
ling’’); or the yarns can rotate about axes perpendicular to the fabric plane, causing a shearing motion
of the fabric (subsequently referred to as ‘‘shear buckling’’). These buckling modes are shown in Fig. 12,
and can lead to instabilities for a quasi-static implicit analysis where the stabilizing effects of inertia are
not included.

A related shortcoming of the continuum approach is that it does not contain explicit information about
the internal material structure, so inertial effects associated with the relative rigid body motions of meso-
structural elements are not automatically accounted for in the mass matrix used in dynamic analyses.
The continuum fabric model can track the inertial resistance to accelerations of the centers of mass of
the yarns, but not the inertial resistance to relative rotation of the yarn segments.

These issues can be addressed by the explicit addition of inertial resistance to yarn rotation. The change
over a time increment in both the in-plane and the out-of-plane rotational velocities of the yarns are divided
Fig. 12. Buckling modes of the fabric structure, with yarn rotational inertia.
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by the length of the time increment to determine average rotational accelerations. The reaction forces and
moments corresponding to these rotational accelerations are then be added to the internal unit cell forces.
This procedure stabilizes the buckling modes in quasi-static implicit analyses and accounts for the addi-
tional rotational inertia of the yarn segments in dynamic analyses.

3.3. Element selection

A finite element discretization cannot predict the exact analytical solution to a general boundary value
problem, since the discretization accommodates only a subset of all compatible displacement fields. For
most established material models it can be proved that a finite element analysis will predict the displacement
field that minimizes the system energy over all displacement fields that it can capture, but this solution will
have greater energy than the exact analytical solution. The displacement fields that a given discretization
can capture, and hence the accuracy of the analysis, depend on both the density of the finite element mesh
and the type of element used. Because of the non-linearities associated with fabric material behavior, ele-
ment choice has a significant effect on the response of our fabric model. In the presence of non-uniform
strain fields when the deformations of the elements are not completely constrained, some element types
exhibit non-physical stress oscillations, as illustrated in Fig. 13, and behave in an artificially stiff manner
in the low stress regime where crimp-interchange dominates the fabric response.

This behavior is similar to the so-called element ‘‘locking’’ behavior displayed by some elements when
used for the analysis of nearly incompressible solids. However, in this case, the oscillations result from
the inability of ‘‘standard’’ (linear and quadratic) finite elements to capture strain fields that vary non-
linearly across the element. Due to the non-linear phenomenon of crimp interchange, in a fabric subjected
to uniaxial extension along one yarn direction a non-linear relationship exists between the axial strain and
the transverse strain corresponding to the minimum energy state. For more general modes of deformation,
if the direct strain component aligned with one yarn direction varies linearly in space, the direct strain com-
ponent aligned with the other yarn direction must vary non-linearly in space in order to minimize energy.
Fig. 13. Stress oscillations in the low-load regime in CPE8 eight-node elements and in CPE8R eight-node reduced integration elements
during a simulated tensile test.
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Such strain field variations are not attainable with standard elements. The deformation modes with the low-
est energies attainable with standard elements exhibit stress oscillations and have a higher energy level when
compared to the optimal configuration, even when a very fine mesh is used. Hence, the finite element model
will be artificially stiff.

These non-physical stress oscillations can be eliminated by using ABAQUS CPE4R elements, which
are four-node linear-interpolation elements with a reduced integration formulation, because in these ele-
ments the strain field is sampled only at a single integration point. However, these elements require a very
fine mesh for accuracy and also require hourglass stiffness control. Of all the other quadrilateral struc-
tural elements available in the finite element code ABAQUS, we have observed that CPE8R elements,
which are eight-node quadratic-interpolation elements with a reduced integration formulation, exhibit
the smallest stress oscillation amplitudes, with only negligible amounts of associated artificial stiffness.
These are the elements we have employed for the analyses presented in this study. After locking or yarn
stretching cause significant increases in stress, the stress oscillations become negligible for all element
types.
4. Experimental determination of model parameters

The model requires that eleven geometric parameters and thirteen component constitutive properties be
defined. In this section we outline experimental techniques that we have used to determine these quantities
and present the data obtained for a plain weave ballistic fabric (Kevlar� S706).

The geometric parameters consist of:

• the angles hi giving the initial orientations of the yarn families;
• the minor (through-thickness) radii ri and major (in-plane) radii Ri of the yarn cross-sections;
• the initial quarter wavelengths of the yarn families 0pi;
• one of the initial half yarn lengths between crossovers 0L1 (the length for the other yarn family 0L2 can be

calculated from geometric constraints); this parameter determines the initial crimp amplitudes and
angles for both yarn families;

• the relaxed crimp angles 0bi, which reflect the amount of ‘‘set’’ in the bent yarns.

The initial quarter wavelengths and the initial yarn family orientations can be measured directly from a
woven fabric sample. The initial half yarn lengths between crossovers (the yarn lengths per quarter-wave-
length) and the relaxed crimp angles can be measured from single yarns removed from the weave. These
values for Kevlar� S706 are reported in Table 1. The yarn radii cannot be measured in this manner, since
they generally change when yarns are removed from the weave.

The shape of the yarn cross-sections in the weave can be determined through microscopy. Fig. 14 shows
micrographs of Kevlar� S706 created by embedding unstretched fabric in epoxy, sectioning the sample,
and photographing the section under an optical microscope. These section micrographs confirm that the
yarns have approximately oval cross sections and that the weft yarn family has greater initial crimp than
the warp yarn family, as is indicated by the wavelength and yarn length measurements. However, the yarn
radii cannot be accurately measured from these micrographs because of potential variations in the position
and orientation of the sectioning plane. The radii, wavelengths, yarn lengths, and amplitudes measured
from the micrograph in Fig. 14 are not geometrically consistent with the wavelengths and yarn lengths ob-
tained from macroscopic measurements. A more indirect method of estimating the minor (through-thick-
ness) radii can instead be used. The total thickness of the fabric is measured and apportioned between the
two yarn families, as reported in Table 1. The major (in-plane) radii affect only the locking behavior of
the fabric, determining the amount of deformation that can occur before the onset of locking (or the initial



Table 1
Measured material parameters for Kevlar� S706

Property Symbol Value Unit

Geometric properties

Fabric thicknessa – 0.300 mm
Warp minor (through-thickness) radius r1 0.075 mm
Weft minor (through-thickness) radius r2 0.075 mm
Warp major (in-plane) radius R1 0.400 mm
Weft major (in-plane) radius R2 0.400 mm
Initial warp quarter wavelength 0p1 0.374 mm
Initial weft quarter wavelength 0p2 0.374 mm
Initial warp amplitudea 0A1 0.060 mm
Initial weft amplitudea 0A2 0.090 mm
Initial warp half yarn length between crossovers 0L1 0.378 mm
Initial weft half yarn length between crossoversa 0L2 0.384 mm
Warp relaxed crimp angle 0b1 1.412 Radians
Weft relaxed crimp angle 0b2 1.334 Radians

Single yarn properties

Warp yarn stiffness per half yarn length k1 3764 N/m
Weft yarn stiffness per half yarn length k2 3948 N/m
Warp yarn bending stiffness kb1 0.00124 Nm/rad
Weft yarn bending stiffness kb2 0.00073 Nm/rad
Warp yarn mass density q1 1441 kg/m3

Weft yarn mass density q2 1441 kg/m3

Interference stiffness properties

Interference relation coefficient KI 0.00309 N
Interference relation exponent a 1 · 106 1/m

Locking stiffness properties

Locking stiffness Kd 1.36 · 1013 N/mc

Locking exponent c 3.70 –

Yarn rotation (shear) properties

Elastic rotational stiffness Ks 0.0131 Nm/rad
Reference dissipative rotation rate _c0 0.00284 Radians/s
Reference dissipative rotation moment M0 3.2 · 10�6 Nm
Dissipative rotation rate sensitivity b 4.0 –

a Dependent on other parameters or not required by model.
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pre-load of the locking spars in tight, pre-locked weaves). For this reason, these parameters are best ob-
tained by curve-fitting the shear response of the fabric, as described later in this section.

The constitutive parameters that must be defined are:

• the axial stiffnesses ki of the yarn segments of length Li;
• the bending stiffnesses of the yarns kbi;
• the mass densities of the yarns (for inertial stabilization) qi;
• the two parameters describing exponential interference at the crossover points, KI and a;
• the two parameters describing the power law locking relation, Kd and c;
• the elastic stiffness associated with relative yarn rotation Ks;
• The two parameters describing rate-dependent dissipative yarn rotation, b and ð _c0=Mb

0Þ.

The yarn axial and bending stiffnesses can be determined from tension tests performed on single yarns.
Fig. 15 shows the results of tests on single weft yarns removed from Kevlar� S706, performed using a



Fig. 14. Micrographs showing cross-sections of Kevlar� S706 woven fabric.

Fig. 15. Load–extension response of single weft yarns removed from Kevlar� S706 fabric.
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Zwick tensile tester model BTC-FR010TH.A50. These tests were conducted under quasi-static loading
conditions with a strain rate of 0.01s�1.

Because the yarns used in this test had been removed from a woven fabric sample, they were initially
crimped rather than straight in the relaxed configuration. Consequently, the load–extension response shows
an initially compliant regime as the yarns straighten, followed by a linear elastic response up to a failure
load of approximately 90N. Kevlar� S706 warp yarns behaved in a similar manner but with a shorter com-
pliant response due to lower initial crimp, and a larger average breaking load of approximately 105N,
probably due to the fact that the warp yarns are damaged less during the weaving process. The axial stiff-
ness of the yarns is calculated from the slope of the linear portion of these curves and is reported in Table 1.
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The bending stiffness is calculated by manipulating the load–extension data in the uncrimping (low load)
regime to obtain the moment acting at the crimp peaks as a function of the crimp angle. These stiffnesses
are so small that they have a negligible effect on the response of the fabric in the high-stress regime, but they
are sufficiently large to impart non-zero stiffness to the model in the low-stress regime.

The yarn densities are necessary only for inertial stabilization of the buckling modes discussed in Section
3.2 and can be scaled as necessary to improve numerical analysis efficiency, at the cost of increased energy
lost artificially to stabilization. We have used the published density for Kevlar�, given in Table 1, which is
sufficiently large to attain a stable material response.

The remaining properties, which describe the crossover point interference behavior, the locking behav-
ior, and the yarn rotation behavior, relate to deformation mechanisms that are controlled by interactions
between yarns of different families. Consequently, these properties cannot be determined through tests on
single yarns. In order to obtain these properties, we conducted tests on samples of woven fabrics and iden-
tified the properties by fitting the fabric response in simple, homogeneous modes of deformation. These
tests are targeted to identify the specific physical properties relating to the interactions of the yarns. The
development of more direct methods to measure or estimate these properties would eliminate the need
for fitting the response of the woven fabric.

We investigated the effectiveness of a ‘‘sandwich compression test’’, shown schematically in Fig. 16, as a
means of determining the properties that govern interference at the crossover points. This test cannot pro-
vide a precise measurement of the interference relation properties, as crossover point yarn interference is
only one of many competing deformation modes through which the macroscopic deformation in this test
can be accommodated. However, this test can provide a useful estimate of the lower bound for the inter-
ference properties by assuming that crossover point interference is the only deformation mechanism under-
lying the macroscopic response. Under this assumption, interference properties obtained by a direct fit of
these data are excessively compliant and need to be appropriately scaled. The values selected for the scaled
interference properties are given in Table 1. Note that scaling is acceptable because the model shows only a
limited dependence of the macroscopic fabric response on the value of these parameters as long as the stiff-
ness of the interference relation is sufficiently large to ensure that interference resistance dominates over
bending resistance, thus allowing crimp interchange to occur.

The sandwich test is unsuitable for accurately determining locking properties because it measures resis-
tance to compression along the minor (transverse) axes of the yarn cross-sections, whereas locking results
primarily in compression along the major (in-plane) axes. Instead, to obtain these properties we conducted
Fig. 16. ‘‘Sandwich’’ test to determine interference properties.



3888 M.J. King et al. / International Journal of Solids and Structures 42 (2005) 3867–3896
so-called ‘‘shear frame’’ tests of the type described by McGuinness and O�Bradaigh (1997) and others (e.g.,
Mohammed et al., 2000; Peng et al., 2004). A shear frame test uses a rhomboidal fixture with hinged cor-
ners, as shown in Fig. 17, that grips a square specimen of fabric. Our specimens were 29.0cm square. Diag-
onally opposite corners of the shear frame are pulled apart using the Zwick tensile tester. This subjects the
fabric to a state of nearly pure yarn rotation, with negligible extension along the yarn directions, until the
onset of wrinkling (out-of-plane buckling). This wrinkling was most significant at the corners of the spec-
imen, as they are not subjected to the same shearing loads as the rest of the specimen, and could have been
alleviated somewhat by cutting off the corners to make a cruciform-shaped sample. However, in all tests
discussed here, the shear frame samples were square, as shown in Fig. 17.

Most of these tests were conducted at an axial displacement rate of 30mm/min, which corresponds to
an initial yarn rotation rate of approximately 2.8 · 10�3 rad/s. All of the properties determined from the
shear frame tests, except for the rate sensitivity exponent for dissipative yarn rotation, were determined at
this rate, which approximately matches the rotation rates in the bias extension tests described in Section
5. Tests at several other rates were performed in order to gain an estimate of the rate sensitivity
exponent.

The response to yarn rotation is dominated by resistance to elastic deformation, resistance to dissipative
deformation, and by locking. Consequently, the shear frame test is suitable for determining the properties
that govern both locking (the yarn major radii Ri and the parameters Kd and c) and yarn rotation (Ks, _c0,
M0, and b). Fig. 18 shows load–extension responses from the shear frame experiments. After dissipative
rotation begins, the shear behavior exhibits an early stiffening response because the S706 fabric is so tightly
woven that it is locked in the stress free configuration, and locking forces that try to force the fabric back
into an orthogonal configuration must be overcome even at small rotation angles. By simulating the shear
frame tests using the model and varying each property in turn, the predicted response can be fitted to the
Fig. 17. Shear frame loaded with specimen.



Fig. 18. Model prediction of shear frame behavior with fitted properties, compared to experiments.
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experimental data and the locking and yarn rotation properties can be determined. The fitted model
response is also shown in Fig. 18, and the corresponding properties are given in Table 1.
5. Comparison of model predictions with experimental findings

5.1. Requirements and description of tests

In order to meet our objectives, the model must be able to:

1. Capture the deformation mechanisms of the fabric and predict, qualitatively and quantitatively, the
deformed shape of a fabric specimen under non-homogeneous modes of deformation (Section 5.2).

2. Predict the macroscopic load-displacement response of a fabric specimen (Section 5.3).
3. Predict local mesostructural quantities, such as yarn tensions and contact forces, that pertain to failure

mechanisms (Section 5.4).

In order to evaluate these capabilities, we conducted three sets of quasi-static uniaxial tensile tests on
strip samples of Kevlar� S706 using the Zwick tensile testing machine. In the first set the load direction
was aligned with the warp yarns; in the second set it was aligned with the weft yarns; and in the third
set it was oriented at 45� to the yarn directions (‘‘bias-extension’’). For the non-bias tests, the load-direction
yarns along each edge of the strips were removed over a width of 0.64cm in order to control the exact num-
ber of yarns per specimen and to eliminate effects due to yarn slip and fraying at the free edges, leaving an
effective specimen size of 2.54cm by 25.4cm with exactly 34 loaded yarns. This large aspect ratio was cho-
sen to minimize end effects at the grips. The bias strips, which undergo much larger elongations before fail-
ure, had a smaller initial aspect ratio: 3.5cm by 9.5cm. All of the uniaxial strip tests were conducted at
0.01s�1 nominal axial strain rate.

Each of these tests was simulated in ABAQUS/Standard using the geometric parameters and constitu-
tive properties determined in Section 4 and summarized in Table 1. The predictive capabilities of the con-
stitutive model were assessed by comparing the predictions of these simulations to the experimental results.
The models were uniformly meshed with approximately square elements of sufficient density as determined
through a mesh refinement study. Eight-node reduced integration elements, designated CPE8R elements
within ABAQUS, were employed to minimize the mesh-dependent stress oscillations at low load levels,
as described in Section 3.3.
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5.2. Predicting the macroscopic deformation

The first requirement for the model is the capability to predict the macroscopic deformation of the fab-
ric. In the yarn-direction tensile tests, the fabric strips contract uniformly in the transverse direction along
most of their length due to crimp interchange, until the load-direction yarns straighten and crimp inter-
change ceases. At the grips, where the fabric strip is clamped, no contraction is permitted. This deformation
behavior is well predicted by the model, as shown in Fig. 19.

For the warp direction tests, the model predicts that at 4% nominal axial strain, in the region of uniform
contraction the fabric strip will have undergone a 4.5% transverse contraction due to crimp interchange,
compared to a 4.0% average contraction observed in the experiments. For the weft-direction tests, the mod-
el predicts a 5.8% contraction at 4% nominal axial strain, compared to a 5.9% average contraction observed
in experiments. Greater contraction occurs in the weft-direction tests because the weft yarns have a greater
degree of initial crimp and consequently crimp interchange dominates a larger portion of the response in
the weft-direction test.

The simulation predictions of macroscopic deformation patterns are accurate in the bias extension test as
well. Fig. 20 shows the predicted and observed deformed shapes and yarn orientations for the bias exten-
Fig. 19. Warp-direction strip tensile test experiment with deformed shape and warp yarn tensions near failure as predicted by the
model (deformation scaled for clarity).



Fig. 20. Predicted and observed deformations and yarn orientations for bias extension test at 17% nominal axial strain.
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sion test near the lower grip. The figure on the left shows a vector field describing the yarn orientations at
each point. The figure on the right is a photograph of a sample at the same deformation magnitude; the
yarn orientations are highlighted by a grid of lines drawn on the fabric parallel to the yarn directions.
The simulation predicts the changing yarn orientations very accurately.

In the bias-extension test, the central portion of the strip contracts as the yarns rotate in a trellising man-
ner. As is evident from Fig. 20, the lateral contraction predicted by the simulation and the lateral contrac-
tion observed in the experiment are in good agreement. The strip exhibits a triangular low-deformation
region at the grip. In the center section of the strip, above these triangular regions, yarn rotation is much
greater, as is evident from the sharper yarn angles. The simulation captures these features. Hence there is
good agreement between the simulation and the experiments, both in capturing the different regions of
deformation and in qualitatively and quantitatively predicting the amount of lateral contraction and the
yarn orientations in each region.

5.3. Predicting the macroscopic load–extension response

The second requirement for the model is the capability to predict the macroscopic load–extension re-
sponse of the fabric. Figs. 21 and 22 show the experimental load–strain curves for the warp and weft direc-
tion tests, along with the corresponding model predictions. Note that load has been normalized to average
load per yarn; this does not imply that the load carried by all the yarns was the same. The total loads on the
samples can be computed by multiplying the loads in Figs. 21 and 22 times the number of yarns in the
Fig. 21. Model prediction of load–strain behavior in warp direction test compared to experiments.



Fig. 22. Model prediction of load–strain behavior in weft direction test compared to experiments.
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sample (thirty-four). The model accurately predicts the correct mechanical response using only the proper-
ties determined independently from the tests described in Section 4; no curve fitting was performed.

The response in a bias-extension test is dominated by the shear and locking properties of the fabric. Bias
tests are generally poorly suited for quantitative comparisons of load responses due to their variability. The
extremely low initial resistance to shear deformation combined with the sensitivity of the test to the bias
angle and sample orientation results in inconsistency in the experimental measurements. For example, in
one set of nine tests, the extension at failure varied between 24 and 32mm and the failure load varied be-
tween 1000 and 1300N. Therefore, in Fig. 23 we only display experimental load-displacement curves within
one standard deviation from the average. Model predictions, obtained using the properties in Table 1, are
shown in Fig. 23, together with the experimental results. The model predicts the average bias-extension re-
sponse accurately with regard to both the strain at which stiffening begins to occur and the stiffened slope.

At larger strains, where the stresses greatly exceed the stresses that develop in the shear frame tests, the
model response is too stiff. This may be an effect of the inherent limitations of the current model, which is
capable of capturing only failure-free in-plane deformation. The fabric in the bias-extension tests exhibits
both wrinkling and unraveling of the weave at large strains, which lead to a more compliant response.

5.4. Predicting the mesostructural response and failure

The last requirement for the model is the capability to predict the response of the fabric at the mesostruc-
tural level when the continuum is subjected to macroscopic loading. This is especially important for predict-
ing the onset of failure. The most obvious mode of failure is yarn breakage, which is governed by the tensile
Fig. 23. Selected experimental and predicted load–extension response in the bias-extension test.



Fig. 24. Failure in a warp-direction tensile test due to yarn breakage, with outer yarns breaking first and failure propagating inwards.
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load carried by the yarns. Fig. 19 shows the model predictions for the warp yarn loads in the warp-direction
tensile test at 4% nominal axial strain. The model indicates that the outermost yarns carry the greatest loads
and therefore will fail first, with yarn failures propagating inwards. This is consistent with the behavior ob-
served during experiments, as shown in Fig. 24.

Furthermore, because the average yarn strengths can be estimated from the single yarn tests, the model
can be used to predict the macroscopic loads at which the yarn failure will initiate in the loaded fabric strip,
even though the model does not capture failure directly. The data points that lie at the end of the model
curves in Figs. 21 and 22 mark the conditions at which the model predicts the onset of failure. The model
predictions agree very well with the experimentally observed macroscopic failure loads.

The model can follow the evolution of a wide variety of mesostructural parameters that may be relevant
to some other modes of failures or impact the functionality of the woven material, including:

• areal density, which is important when the permeability of the fabric is relevant (e.g., for protection from
chemical agents);

• crimp angle, which is relevant if components that are sensitive to bending deformation (such as micro-
electronics or microfluidics) are woven among the yarn fibers;

• contact forces at the crossover points, which govern the transverse loads on interwoven components and
change the resistance to yarn slippage;

• contact forces due to locking, which act as transverse forces on interwoven components and can also
cause yarn slippage.

The ability to capture the evolution of such parameters gives the model the flexibility to predict the onset
of failure for either a simple fabric or a fabric system with interwoven components.
6. Conclusions and future work

We have proposed a systematic approach for creating fabric continuum models that is sufficiently gen-
eral to be tailored to a variety of different applications. Continuum models are more computationally effi-
cient and easier to interface with other components of complex structures than discrete models that directly
capture individual yarns. Although the continuum models developed using this approach do not directly
model individual yarns, they contain information about the behavior of the fabric mesostructure. Through
this approach, the response at the fabric mesostructural level to macroscopic loads, and the effects of
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mesostructural level innovations on the macroscopic response, can be determined in a computationally effi-
cient manner that is easily integrated with other material models.

The first two steps of the approach rely on development of a representative fabric geometry with a
repeating unit cell and of constitutive relations describing the deformations and interactions of the compo-
nent yarns. These two steps determine the complexity, accuracy, and efficiency of the model. Next, the con-
figuration of the fabric geometry is related to the macroscopic state of deformation of the fabric continuum
by minimizing a conditional elastic energy function. Once the fabric configuration is determined from the
state of deformation, the internal forces within the fabric unit cell (such as yarn tensions and contact forces)
can be calculated from the constitutive relations of the components. Finally, these mesostructural forces are
converted into macroscopic continuum stresses. The chief assumption of this approach is that no failure or
yarn slippage occurs so that the crossover points deform in an affine manner with the continuum.

We have used this approach to develop a model for the quasi-static, in-plane behavior of a plain weave
ballistic fabric, Kevlar� S706. We based this model on a geometry similar to that proposed by Kawabata
(1973), but with additional ‘‘contact’’ trusses that allow the geometry to capture locking. The model in-
cludes elastic yarn stretching, bending, cross-sectional compression at the crossover points, locking, and
both elastic and dissipative relative yarn rotation.

We have implemented this model into ABAQUS/Standard and used it to predict the outcome of uniaxial
tensile tests on fabric strips loaded in the warp, weft, and bias directions. In all three cases, the model accu-
rately predicted the experimentally observed deformations and the macroscopic load–extension responses
using independently measured properties. We also showed that the model can predict the response of the
fabric at the mesostructural level, and that this behavior can be used to predict the onset of failure.

We are conducting further research on three different aspects of fabric mechanical behavior: we are
developing a more refined model capable of capturing slippage and other failure mechanisms; we are
expanding the model to a three dimensional shell implementation to capture out-of-plane deformations
of the fabric; and we are developing improved testing capabilities, including biaxial tension tests, to better
measure individual yarn properties, study yarn interactions, better validate the existing model, and inves-
tigate and quantify phenomena such as yarn slip, out-of-plane deformations, and high rate deformations.
Other potential avenues of further research include the implementation of more complex fabric geometries,
the investigation and modeling of contact between multiple layers of woven materials, and the extension of
our model to other woven fabrics for applications in a variety of industries, particularly to ‘‘structural fab-
rics’’ (such as air beams or parachutes) and to woven fabric composites.
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